ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • [자료구조] Graph - 그래프 개념, 인접행렬, 인접리스트 구현
    Archive/CS & App 2021. 6. 26. 21:43
    728x90

    자료구조 07 - 1 / Graph


    정의 

    https://www.raywenderlich.com

    각 객체(꼭지점, 정점: vertex, vertices, Node)가 간선(Edge, Link)으로 서로 이어져 있는 집합, 사이클(순환)을 허용한다.

     

    E(u, v) = souce vertex에서 destination vertex로 가는 edge

    Degree 각 정점에 연결된 Edge 수 (Directed Graph에서 나가는 간선 개수 Outdegree/ 들어오는 간선 개수 Indegree 

    weighted Graph 가중 그래프

    Sub Graph 부분 그래프

    완전 그래프 (모든 정점 간선으로 연결

     

    Weighted Graph

     

    Directed Graph(Digraph) and Undirected Graph

     

    Representing a Graph

     

    Approch 접근방식

    Storing an array of Arrays: 행렬 저장방식 (이차원 배열)

     

    - index (source, destination)와 value는 간선의 갯수 파악 O(1), 탐색 속도 비교적 빠름, 간선 확인 비교적 빠름

     

     

    Storing an array of Linked-lists: 연결 리스트 저장방식

     

    - index는 edge, value는 vertex, 빠른 삽입/삭제 시간이 필요한 경우, 정점간 연결 확인이 오래 걸림, 탐색 O(n) 간선 갯수, 공간 낭비 적음, 구현 복잡

    Storing a Dictionary of arrays: 딕셔너리 저장방식

    - 각 객체를 만들고 딕셔너리의 Items로 사용 key가 edge, value는 vertex  

     

     

    활용

    지하철 노선, 도록, 소셜 네트워크, 신경망, 금융등

    사물간의 순서 를 그래프로 표현, 관계를 표현

     

    네비게이션 길막힘?! (공사중)

     

    구현

     

     

    Implementing the Adjacency List & Matrix

    public struct Edge<T>: Equatable where T: Equatable, T: Hashable {
    
      public let from: Vertex<T>
      public let to: Vertex<T>
    
      public let weight: Double?
    
    }
    public struct Vertex<T>: Equatable where T: Equatable, T: Hashable {
    
      public var data: T
      public let index: Int
    
    }
    private class EdgeList<T> where T: Equatable, T: Hashable {
    
      var vertex: Vertex<T>
      var edges: [Edge<T>]? = nil
    
      init(vertex: Vertex<T>) {
        self.vertex = vertex
      }
    
      func addEdge(_ edge: Edge<T>) {
        edges?.append(edge)
      }
      func createVertex(_ data: T) -> Vertex<T> {
      	// 방식별로
      }
    }
    // 인접 리스트
    open override func createVertex(_ data: T) -> Vertex<T> {
       // check if the vertex already exists
       let matchingVertices = vertices.filter() { vertex in
          return vertex.data == data
       }
    
       if matchingVertices.count > 0 {
          return matchingVertices.last!
       }
    
       // if the vertex doesn't exist, create a new one
       let vertex = Vertex(data: data, index: adjacencyList.count)
       adjacencyList.append(EdgeList(vertex: vertex))
       return vertex
    }
    // v1 -> [(v2: 1.0)]
    // v2 -> [(v3: 1.0), (v5: 3.2)]
    // v3 -> [(v4: 4.5)]
    // v4 -> [(v1: 2.8)]
    // 인접 행렬
    open override func createVertex(_ data: T) -> Vertex<T> {
      // check if the vertex already exists
      let matchingVertices = vertices.filter() { vertex in
        return vertex.data == data
      }
    
      if matchingVertices.count > 0 {
        return matchingVertices.last!
      }
    
      // if the vertex doesn't exist, create a new one
      let vertex = Vertex(data: data, index: adjacencyMatrix.count)
    
      // Expand each existing row to the right one column.
      for i in 0 ..< adjacencyMatrix.count {
        adjacencyMatrix[i].append(nil)
      }
    
      // Add one new row at the bottom.
      let newRow = [Double?](repeating: nil, count: adjacencyMatrix.count + 1)
      adjacencyMatrix.append(newRow)
    
      _vertices.append(vertex)
    
      return vertex
    }
    // [[nil, 1.0, nil, nil, nil]    v1
    //  [nil, nil, 1.0, nil, 3.2]    v2 
    //  [nil, nil, nil, 4.5, nil]    v3
    //  [2.8, nil, nil, nil, nil]    v4
    //  [nil, nil, nil, nil, nil]]   v5
    //
    //   v1   v2   v3   v4   v5

    Implementing The Dictionary of the Adjacency List: 딕셔너리

    Vertices

     

    // Swift 5
    // raywenderlich.com
    
    public struct Vertex<T: Hashable> {
      var data: T
    }
    extension Vertex: Hashable {
      public var hashValue: Int { // 1
          return "\(data)".hashValue
      }
      
      static public func ==(lhs: Vertex, rhs: Vertex) -> Bool { // 2
        return lhs.data == rhs.data
      }
    }
    extension Vertex: CustomStringConvertible {
      public var description: String {
        return "\(data)"
      }
    }
    

    Edges

    public enum EdgeType {
      case directed, undirected
    }
    public struct Edge<T: Hashable> {
      public var source: Vertex<T> 	// 간선이 출발하는 정점
      public var destination: Vertex<T>
      public let weight: Double? 	// 숫자를 이용해서 weight 부여
    }
    extension Edge: Hashable {
      
      public var hashValue: Int {
          return "\(source)\(destination)\(weight)".hashValue
      }
      
      static public func ==(lhs: Edge<T>, rhs: Edge<T>) -> Bool {
        return lhs.source == rhs.source &&
          lhs.destination == rhs.destination &&
          lhs.weight == rhs.weight
      }
    }
    

    Graphable Protocol

    protocol Graphable {
      associatedtype Element: Hashable 						// Generic 타입 선택	
      var description: CustomStringConvertible { get } 		// 검산용 프린트
      
      func createVertex(data: Element) -> Vertex<Element> 	// 정점 생성
      
      func add(_ type: EdgeType, from source: Vertex<Element>, 
       to destination: Vertex<Element>, weight: Double?) 	
      // Edge 타입을 구분해서 정점사이에 Edge 추가
      
      func weight(from source: Vertex<Element>, 
      		   to destination: Vertex<Element>) -> Double? 	
      // 두 정점 사이 weight 반환 
      
      func edges(from source: Vertex<Element>) -> [Edge<Element>]? 
      // source 정점의 edge 반환
    }
    

    Adjacency List

    open class AdjacencyList<T: Hashable> {
      public var adjacencyDict : [Vertex<T>: [Edge<T>]] = [:]
      public init() {}
    }
    extension AdjacencyList: Graphable {
      public typealias Element = T
      
      public func createVertex(data: Element) -> Vertex<Element> {
      	let vertex = Vertex(data: data)
      
      	if adjacencyDict[vertex] == nil {
           adjacencyDict[vertex] = []
      	}
    
        return vertex
      }
    }
    

    extension AjacencyList {
       public func add(_ type: EdgeType, from source: Vertex<Element>, 
       		   to destination: Vertex<Element>, weight: Double?) {
         switch type {
         case .directed:
            addDirectedEdge(from: source, to: destination, weight: weight)
         case .undirected:
            addUndirectedEdge(vertices: (source, destination), weight: weight)
         }
       }
       fileprivate func addDirectedEdge(from source: Vertex<Element>, 
       		to destination: Vertex<Element>, weight: Double?) {
         let edge = Edge(source: source, destination: destination, weight: weight) // Edge 생성
         adjacencyDict[source]?.append(edge) // Edge를 souce 정점에 연결 
       }
       fileprivate func addUndirectedEdge(vertices: (Vertex<Element>, Vertex<Element>), 
        									 weight: Double?) {
         let (source, destination) = vertices
         addDirectedEdge(from: source, to: destination, weight: weight)
         addDirectedEdge(from: destination, to: source, weight: weight)
       }
    }

     

     

    extension Ajac
      public func weight(from source: Vertex<Element>, 
      				  to destination: Vertex<Element>) -> Double? {
        guard let edges = adjacencyDict[source] else { 	// source 정점에서 Edge 없으면 
           return nil
        }
        for edge in edges { 					// 각 Edge를 방문 
           if edge.destination == destination { 	// Edge의 목적지 비교를 이용해 해당 Edge의 weight 찾기
             return edge.weight
           }
        }
         return nil 							// weight 없으면
      }
      public var description: CustomStringConvertible {
         var result = ""
         for (vertex, edges) in adjacencyDict {
            var edgeString = ""
            for (index, edge) in edges.enumerated() {
               if index != edges.count - 1 {
               edgeString.append("\(edge.destination), ")
            } else {
               edgeString.append("\(edge.destination)")
            }
          }
          result.append("\(vertex) ---> [ \(edgeString) ] \n ")
          }
        return result
      }
    }

     

    let adjacencyList = AdjacencyList<String>()
    
    let singapore = adjacencyList.createVertex(data: "Singapore")
    let tokyo = adjacencyList.createVertex(data: "Tokyo")
    let hongKong = adjacencyList.createVertex(data: "Hong Kong")
    let detroit = adjacencyList.createVertex(data: "Detroit")
    let sanFrancisco = adjacencyList.createVertex(data: "San Francisco")
    let washingtonDC = adjacencyList.createVertex(data: "Washington DC")
    let austinTexas = adjacencyList.createVertex(data: "Austin Texas")
    let seattle = adjacencyList.createVertex(data: "Seattle")
    
    adjacencyList.add(.undirected, from: singapore, to: hongKong, weight: 300)
    adjacencyList.add(.undirected, from: singapore, to: tokyo, weight: 500)
    adjacencyList.add(.undirected, from: hongKong, to: tokyo, weight: 250)
    adjacencyList.add(.undirected, from: tokyo, to: detroit, weight: 450)
    adjacencyList.add(.undirected, from: tokyo, to: washingtonDC, weight: 300)
    adjacencyList.add(.undirected, from: hongKong, to: sanFrancisco, weight: 600)
    adjacencyList.add(.undirected, from: detroit, to: austinTexas, weight: 50)
    adjacencyList.add(.undirected, from: austinTexas, to: washingtonDC, weight: 292)
    adjacencyList.add(.undirected, from: sanFrancisco, to: washingtonDC, weight: 337)
    adjacencyList.add(.undirected, from: washingtonDC, to: seattle, weight: 277)
    adjacencyList.add(.undirected, from: sanFrancisco, to: seattle, weight: 218)
    adjacencyList.add(.undirected, from: austinTexas, to: sanFrancisco, weight: 297)
    
    print(adjacencyList.description)
    

    추가적으로 생각해볼 내용

    면접 예상질문

    Q: 트리도 노드와 간선으로 이루어져 있는데 차이점은?

    A: 그래프는 트리와 달리 root(시작점) 개념이 없으며 노드간의 관계에서 부모, 자식 관계를 가지지 않음, indirect와 direct 두가지를 선택적으로 가능(트리는 directed graph), 트리와 달리 Cycle(순환)이 가능함

     

    Reference : raywenderlich.com github explain
    728x90
Designed by Tistory.